jueves, 20 de septiembre de 2012

<CENTER>HISTORIA DEL CALCULO DIFERENCIAL E INTEGRAL</CENTER>
ALGUNOS ANTECEDESNTES SOBRE EL CALCULO


LAS MATEMATICAS EN GRECIA:



las matemáticas obtuvieron su mayor aporte de la cultura Greco Romana. Fue en Grecia, don de se hizo popular la creación de escuelas, en donde los grandes pensadores de la época daban resolución a los problemas más populares de geometría, álgebra, y trigonometría.
Los aportes de esta cultura a las matemáticas son de enorme magnitud. Por ejemplo en el campo de la geometría, se dio la demostración del teorema de Pitágoras, a demás que fue hallado el método para conseguir la serie indefinida de ternas de números pitagóricos, que satisfacen la ecuación .
Incluso se trabajó enormemente en la resolución y demostración de distintos problemas, como en la trisección de un ángulo, y en la cuadratura de áreas acotadas por una curva. Esto conllevó a al avance en él calculo del número pi y a la creación del método de exaución (predecesor del cálculo de limites), creado por Euxodo.

CIVILIZACION EGIPTICA


En este momento de la historia, la Civilización Egipcia, llevaba la pauta con el avance en sus conocimientos matemáticos. Según varios papiros escritos en esa época, los egipcios inventaron el primer sistema de numeración, basado en la implementación de jeroglíficos. El sistema de numeración egipcio, se basaba en sustituir los números clave (1, 10, 100...), con figuras (palos, lazos, figuras humanas...), los demás números eran escritos por la superposición de estas mismas figuras, pero en clave. Este sistema es la pauta para lo que hoy conocemos como el sistema romano.

Otras civilizaciones importantes en la historia, como la babilónica, crearon otros sistemas de numeración. En la Antigua Babilonia, la solución al problema de contar los objetos, se vio resuelto con la implementación de un método sexagesimal. Este método tenia la particularidad de escribir un mismo signo como la representación de varios números diferenciados por el enunciado del problema.


DEFINICION DE CALCULO


En general el término cálculo (del latín calculus = piedra)1 hace referencia, indistintamente, a la acción o el resultado correspondiente a la acción de calcular. Calcular, por su parte, consiste en realizar las operaciones necesarias para prever el resultado de una acción previamente concebida, o conocer las consecuencias que se pueden derivar de unos datos previamente conocidos.
No obstante, el uso más común del término cálculo es el lógico-matemático. Desde esta perspectiva, el cálculo consiste en un procedimiento mecánico, o algoritmo, mediante el cual podemos conocer las consecuencias que se derivan de unos datos previamente conocidos debidamente formalizados y simbolizados.



CALCULO DIFERENCIAL


El cálculo diferencial es una parte importante del análisis matemático y dentro del mismo del cálculo. Consiste en el estudio del cambio de las variables dependientes cuando cambian las variables independientes de las funciones o campos objetos del análisis. El principal objeto de estudio en el cálculo diferencial es la derivada. Una noción estrechamente relacionada es la de diferencial de una función.
Desde el punto de vista matemático de las funciones y la geometría, la derivada de una función en un cierto punto es una medida de la tasa en la cual una función cambia conforme un argumento se modifica. Esto es, una derivada involucra, en términos matemáticos, una tasa de cambio. Una derivada es el cálculo de las pendientes instantáneas de f(x) en cada punto x .



ejemplos:



calculo integral


La idea del cálculo integral consiste en calcular, en general, superficies curvilíneas, es decir, el área entre la gráfica de una función y el eje-x. la estructura es la siguiente:


Es la integral definida de la función f de [variable] x [los límites] de A a B. Se pretende que la zona entre la curva y los ejes como en la imagen de arriba S. Más específicamente, es que esta es una integral de Riemann (por ejemplo, Riemann), hay también integrante líneas generales. El cálculo integral se refiere al cálculo de integrales tales.

ejemplo:




chistes matematicos


El profesor de Matemáticas:
Estoy indignado, más del 80% de la clase no pasó el examen.
En eso escucha risas desde la última fila del salón.
¡Si ni siquiera somos tantos!

¿Qué le dijo un número 3 a un número 30?
Para ser como yo, tienes que ser sincero.

Hombre (casado + divorciado) + vuelto a casar = estúpido al cuadrado